

Sentiment Analysis on Twitter Data Tracking Perceptions Over Time Jasper Drumm, Timothy Machnacki, William Morland, Evan Parres, Alexander Pohlman {jasperd, tmachnac, wmorland, evparres, apohlman}@umich.edu

Introduction

Motivation:

Companies are often concerned about public perception, and rightly so. How people view a company, whether positively or negatively, influences a company's profit margin and growth. Furthermore, it is also important for a company to gauge the public's reactions to recent events like a new product launch or marketing campaign.

Goal:

To aid such companies, we create a system that can retrieve recent tweets about a company. The system then performs sentiment analysis on them, classifying them as positive or negative, so that businesses can quickly, easily, and cheaply evaluate public sentiment.

	Rachitt @rachittshah
	Name something more broken than Window wait
	2:51 AM · Apr 11, 2022
	Read the full conversation on Twitter
0 19	Q Reply 🕂 Share
	Read 11 replies

Methodology

Model Selection:

to use for our model:

BERT:

Producing the best accuracy was models using BERT embeddings as features, while the classifiers performed similarly.

PySentimiento:

- Used this library containing a pre-trained BERT model for sentiment analysis.
- Allows us to not have to fine-tune BERT model ourselves, which would've taken computing power beyond our capabilities.

BERT on Airline Data

	Precision	Recall	F1-Score	Support
0 😕	0.91	0.82	0.86	1260
2 😐	0.56	0.65	0.60	416
4 🙂	0.73	0.86	0.79	324
Accuracy			0.79	2000
Macro Avg.	0.73	0.78	0.75	2000
Weighted Avg.	0.81	0.79	0.79	2000

Naive Bayes on Airline Data

	Precision	Recall	F1-Score	Support
0 😕	0.95	0.46	0.62	1260
4 🙂	0.30	0.90	0.45	324
Accuracy			0.55	1584
Macro Avg.	0.62	0.68	0.54	1584
Weighted Avg.	0.82	0.55	0.59	1584

Findings:

Future Work:

Results

Conclusions

• BERT significantly outperformed other methods. • Our results suggest that classifiers have more difficulty correctly classifying positive and neutral tweets in comparison to negative tweets. • Users may be more inclined to post about a negative experience with a brand or company.

• Train using a more domain-specific dataset • Expand system to include more than companies and brands (i.e., universities) • Expand system to include posts from other media platforms (i.e., YouTube comments).